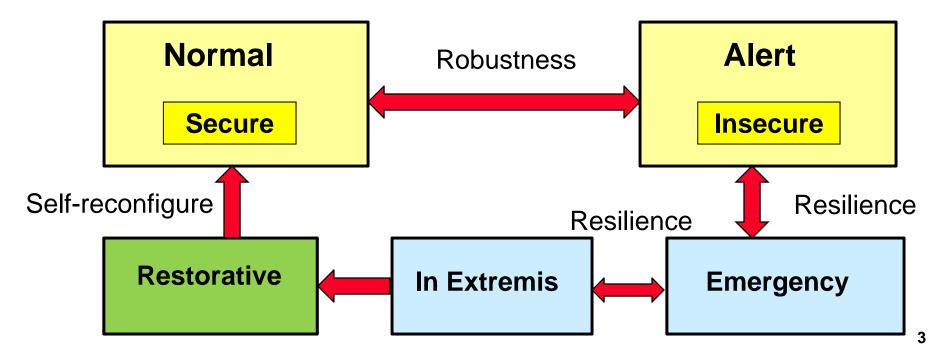

2011 RESIN Workshop

Making the Concepts of Robustness, Resilience and Sustainability Useful Tools for Power System Planning, Operation and Control

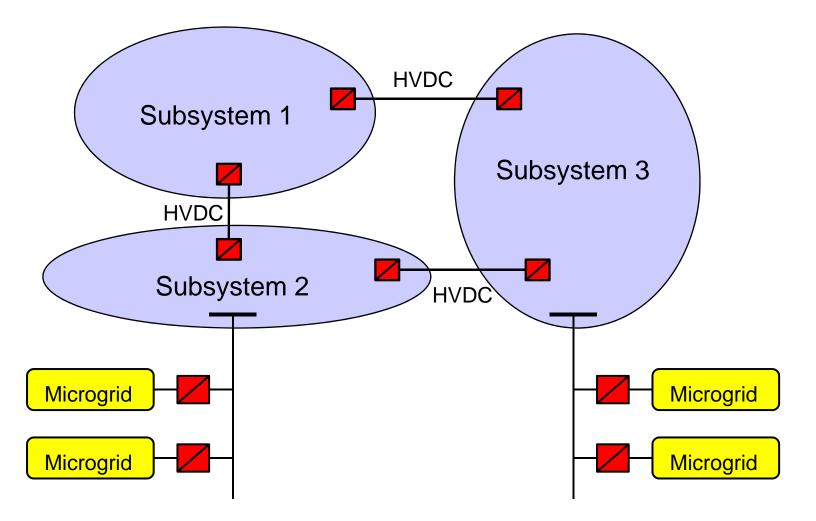
Lamine Mili


Bradley Department of Electrical and Computer Engineering Virginia Tech, Northern Virginia Center Falls Church, VA 22043, USA

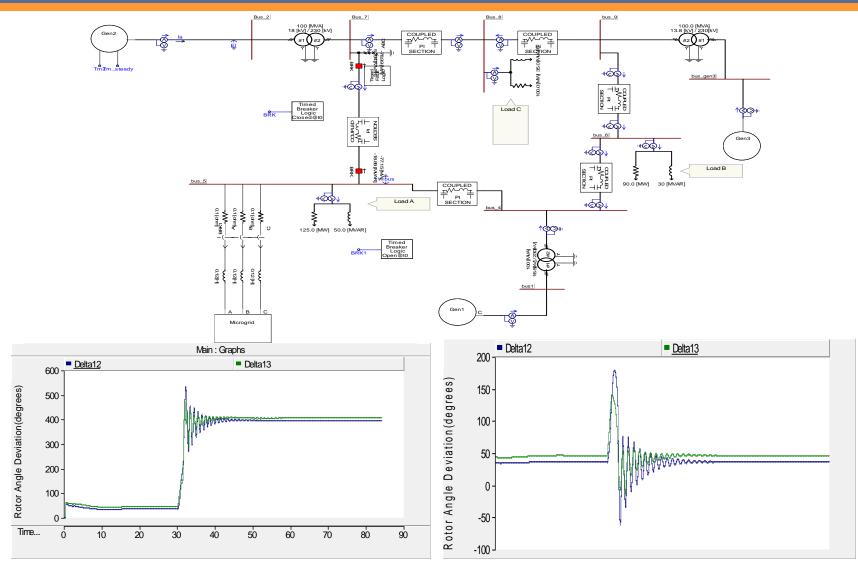
NSF EFRI Grant 0835879

Definition of Robustness and Resilience

- **Robustness** to a class of perturbations is defined as the ability of a system to maintain its function (normal state) when it is subject to perturbations of this class.
- Resilience to a class of <u>unanticipated</u> failures is defined as the ability of a system to gracefully degrade and to quickly <u>self-recover</u> to a normal state.



Achieving Resilience via Modularity


- Resilience is achieved
 - via a segmentation of the system into weakly coupled subsystems to prevent the propagation of local failures to large areas via cascading events;
 - and via distributed and coordinated control actions
- A trade-off between robustness and resilience can be formulated as an optimization problem subject to a bound on the cost.
- This optimization will indicate where to segment the transmission system via HVDC links and will give us the desired level of penetration of microgrids.

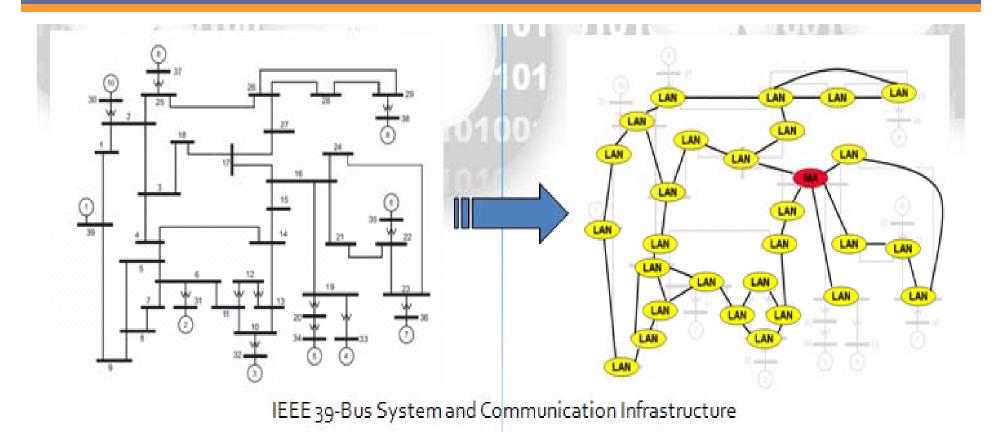
Power System Segmentation (EPRI)

A metric of system flexibility is being developed using the potential energy function.

Enhancement of the Stability Margin

System without microgrid: critically unstable; Critical clearing time is 833 ms

The microgrid increases the stability margins. Critical clearing time is 1.3 s


6

Mitigating Hurricanes' Impacts

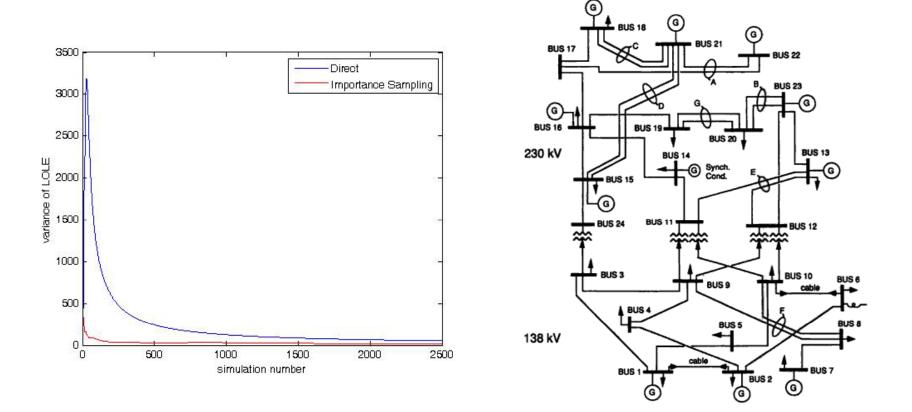
- Following hurricanes, microgrids can provide electric energy to customers in an islanding mode for several weeks.
- A cost-benefit analysis is being carried out in a case study in Florida that integrates energy, transportation, water, and communications infrastructures

Agent Based Supervision of Zone 3 Relays

- Master agents co-ordinate with slaves in a peer-to-peer manner
- Monitor and control power system through interconnected network

Maximum Delays in the Network

Maximum delays in the network sharing same topology with the power lines


Maximum delay in the hierarchical network with LANs in the substation

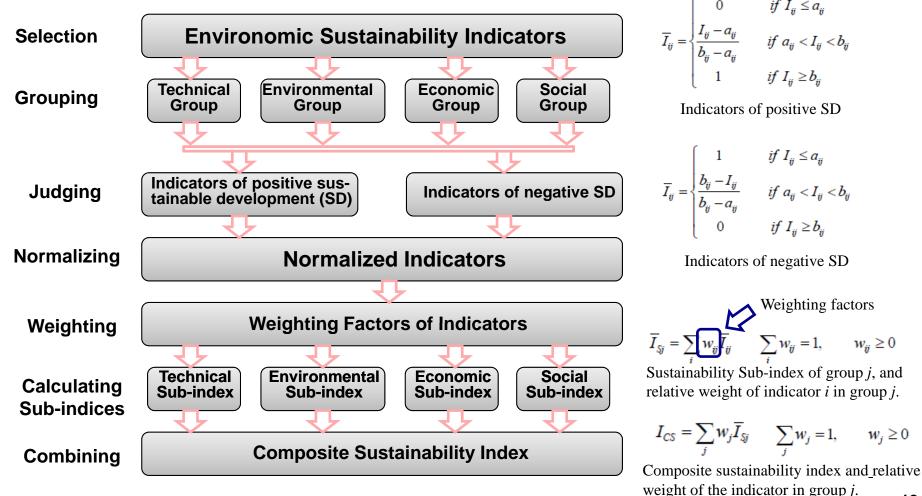
	PLC	Copper	Fiber
UDP without Traffic	160.4ms	2ms	0.416ms
TCP without outTraffic	640. <mark>4</mark> ms	4.8ms	0.464ms
UDP with Traffic	N/A	3.6ms	0.432ms
TCP with Traffic	N/A	5.2ms	0.448ms

	PLC	Copper	Fiber
UDP without Traffic	1082.588ms	12.188ms	2.684ms
TCP without outTraffic	2002.748ms	22.748ms	3.024ms
UDP with Traffic	N/A	48.4ms	3.014ms
TCP with Traffic	N/A	50.8ms	3.104ms

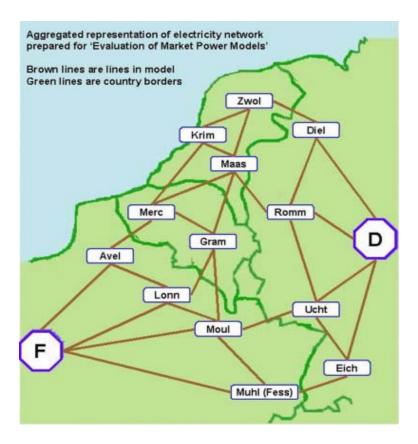
Modeling of Cascading Failure in Power Systems


The IEEE reliability test system has 9 different types of 32 generating units ranging from 12MW to 400MW.

The variance of the Loss of Load Expectation (LOLE) for the direct method and the importance sampling algorithm


Sustainability of Power and Communications Systems

 Development of theoretical foundations of a twolevel sustainability assessment framework (SAF)

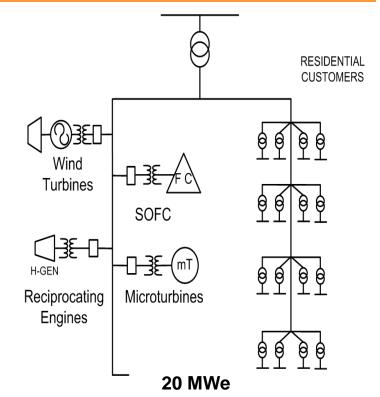

Sustainable Power System

• Selection of environomic sustainability indicators to assess the sustainability of the *NW European regional transmission/distribution grid interacting with a set of micro-grids (Frangopoulos et al., 2010*).

12

Sustainability of Microgrids in the NW European Market

- Goal: Assess the sustainability of microgrids in the NW European market that consists of 15 nodes.
- Market Simulator: COMPETES


 (COmprehensive Market Power in Electricity Transmission and Energy Simulator)
 www.ecn.nl/ps/tools/modellingsystems/competes/
- This Model was enhanced to quantify emissions and thermodynamic efficiency
- Collaborators: O. Ozdemir and S. Hers, ECN (The Netherlands)

Sustainable Power System

- Development of a 20 MW residential micro-grid configuration including renewable and non-renewable technologies with cogeneration tied to a NW European power network and used in *an upper-level SAF*.
- 50 Residential MGs are aggregated at the node Krim in the Netherlands
- The daily load demand is divided into base load, intermediate load, and peak load.

technology		(ton/MWh)	
Technology	CO ₂	NO _x	SO _x
SOFC	0.402	0.000007	-
Gas MT	0.778	0.000238	-
Diesel RE	0.826	0.00095	0.00163
Boiler	0.234	0.00038	-

Emission rates in the MG by

Characteristics of MG technologies

MG	Capital cost	Useful life	Unitary size	Energetic
technology	(\$/kW)	(years)	(kW)	efficiency
Wind turbines	1,467	20	1,800	18%
SOFC	4,700	10	1,000	50%
Microturbine	2,500	20	60	26%
Diesel RE	350	20	180	34%

14

Impacts of Microgrids

- Microgrids (MGs) lead to an improvement in the energetic and exergetic efficiency.
- MGs enhance the sustainability of a power system because they yield a reduction in both CO₂ and NO_x emissions.
- MG scenarios are *less*
 economically sustainable
 due to the high capital costs
 of the MG technologies,
 especially fuel cells.

Application of an Upper-level SAF to the NW European Power Network

index	0.3260	0.4052	0.5776	0.6517
Composite sust	tainability	,		
sub-index	0.4683	0.4726	0.4706	0.4749
Technical				
9	0.4453	0.4538	0.4474	0.4560
8	0.4111	0.4111	0.4132	0.4132
7	0.4561	0.4645	0.4582	0.4667
6	0.5608	0.5608	0.5635	0.5635
sub-index	0.50	0.38	0.62	0.50
Economic				
5	0	0.28	0.73	1
4	1	0.49	0.51	0
sub-index	0.01	0.36	0.65	0.98
Environmental				
3	0.03	0	1	0.94
2	0	0.62	0.39	1
1	0	0.46	0.54	1
Indicator	S1	S 2	S3	S4

 S1 – no MG, no CO2 price
 S2 – MG, no CO2 price

 S3 – no MG, CO2=25 €ton
 S4 – MG, CO2=25 €ton

Conclusions

- Microgrids will allow a host of small-scale renewable energy resources to be interconnected with a power system.
- Microgrids will provide a power system with enhanced flexibility and agility during emergency conditions.
- Microgrids will represent a paradigm shift in power system operation and control. They are one of the key components of a smart grid.